Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1357153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685958

RESUMO

Vegetable cultivation stands as a pivotal element in the agricultural transformation illustrating a complex interplay between technological advancements, evolving environmental perspectives, and the growing global demand for food. This comprehensive review delves into the broad spectrum of developments in modern vegetable cultivation practices. Rooted in historical traditions, our exploration commences with conventional cultivation methods and traces the progression toward contemporary practices emphasizing the critical shifts that have refined techniques and outcomes. A significant focus is placed on the evolution of seed selection and quality assessment methods underlining the growing importance of seed treatments in enhancing both germination and plant growth. Transitioning from seeds to the soil, we investigate the transformative journey from traditional soil-based cultivation to the adoption of soilless cultures and the utilization of sustainable substrates like biochar and coir. The review also examines modern environmental controls highlighting the use of advanced greenhouse technologies and artificial intelligence in optimizing plant growth conditions. We underscore the increasing sophistication in water management strategies from advanced irrigation systems to intelligent moisture sensing. Additionally, this paper discusses the intricate aspects of precision fertilization, integrated pest management, and the expanding influence of plant growth regulators in vegetable cultivation. A special segment is dedicated to technological innovations, such as the integration of drones, robots, and state-of-the-art digital monitoring systems, in the cultivation process. While acknowledging these advancements, the review also realistically addresses the challenges and economic considerations involved in adopting cutting-edge technologies. In summary, this review not only provides a comprehensive guide to the current state of vegetable cultivation but also serves as a forward-looking reference emphasizing the critical role of continuous research and the anticipation of future developments in this field.

2.
Front Plant Sci ; 15: 1310634, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328707

RESUMO

Anthocyanins are plant-based pigments that are primarily present in berries, grapes, purple yam, purple corn and black rice. The research on fruit corn with a high anthocyanin content is not sufficiently extensive. Considering its crucial role in nutrition and health it is vital to conduct further studies on how anthocyanin accumulates in fruit corn and to explore its potential for edible and medicinal purposes. Anthocyanin biosynthesis plays an important role in maize stems (corn). Several beneficial compounds, particularly cyanidin-3-O-glucoside, perlagonidin-3-O-glucoside, peonidin 3-O-glucoside, and their malonylated derivatives have been identified. C1, C2, Pl1, Pl2, Sh2, ZmCOP1 and ZmHY5 harbored functional alleles that played a role in the biosynthesis of anthocyanins in maize. The Sh2 gene in maize regulates sugar-to-starch conversion, thereby influencing kernel quality and nutritional content. ZmCOP1 and ZmHY5 are key regulatory genes in maize that control light responses and photomorphogenesis. This review concludes the molecular identification of all the genes encoding structural enzymes of the anthocyanin pathway in maize by describing the cloning and characterization of these genes. Our study presents important new understandings of the molecular processes behind the manufacture of anthocyanins in maize, which will contribute to the development of genetically modified variants of the crop with increased color and possible health advantages.

3.
BMC Plant Biol ; 23(1): 631, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062375

RESUMO

Maize (Zea mays L.) is an important food and feed crop worldwide and serves as a a vital source of biological trace elements, which are important breeding targets. In this study, 170 maize materials were used to detect QTNs related to the content of Mn, Fe and Mo in maize grains through two GWAS models, namely MLM_Q + K and MLM_PCA + K. The results identified 87 (Mn), 205 (Fe), and 310 (Mo) QTNs using both methods in the three environments. Considering comprehensive factors such as co-location across multiple environments, strict significance threshold, and phenotypic value in multiple environments, 8 QTNs related to Mn, 10 QTNs related to Fe, and 26 QTNs related to Mo were used to identify 44 superior alleles. Consequently, three cross combinations with higher Mn element, two combinations with higher Fe element, six combinations with higher Mo element, and two combinations with multiple element (Mn/Fe/Mo) were predicted to yield offspring with higher numbers of superior alleles, thereby increasing the likelihood of enriching the corresponding elements. Additionally, the candidate genes identified 100 kb downstream and upstream the QTNs featured function and pathways related to maize elemental transport and accumulation. These results are expected to facilitate the screening and development of high-quality maize varieties enriched with trace elements, establish an important theoretical foundation for molecular marker assisted breeding and contribute to a better understanding of the regulatory network governing trace elements in maize.


Assuntos
Oligoelementos , Estudo de Associação Genômica Ampla , Zea mays/genética , Melhoramento Vegetal , Fenótipo
4.
Front Plant Sci ; 14: 1285512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941670

RESUMO

Magnesium (Mg2+) is pivotal for the vitality, yield, and quality of horticultural crops. Central to plant physiology, Mg2+ powers photosynthesis as an integral component of chlorophyll, bolstering growth and biomass accumulation. Beyond basic growth, it critically affects crop quality factors, from chlorophyll synthesis to taste, texture, and shelf life. However, Mg2 + deficiency can cripple yields and impede plant development. Magnesium Transporters (MGTs) orchestrate Mg2+ dynamics, with notable variations observed in horticultural species such as Cucumis sativus, Citrullus lanatus, and Citrus sinensis. Furthermore, Mg2+ is key in fortifying plants against environmental stressors and diseases by reinforcing cell walls and spurring the synthesis of defense substances. A burgeoning area of research is the application of magnesium oxide nanoparticles (MgO-NPs), which, owing to their nanoscale size and high reactivity, optimize nutrient uptake, and enhance plant growth and stress resilience. Concurrently, modern breeding techniques provide insights into Mg2+ dynamics to develop crops with improved Mg2+ efficiency and resilience to deficiency. Effective Mg2+ management through soil tests, balanced fertilization, and pH adjustments holds promise for maximizing crop health, productivity, and sustainability. This review unravels the nuanced intricacies of Mg2+ in plant physiology and genetics, and its interplay with external factors, serving as a cornerstone for those keen on harnessing its potential for horticultural excellence.

5.
Genes (Basel) ; 13(4)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35456369

RESUMO

Drought is one of the most critical environmental factors constraining maize production. When it occurs at the flowering stage, serious yield losses are caused, and often, the damage is irretrievable. In this study, anthesis to silk interval (ASI), plant height (PH), and ear biomass at the silking date (EBM) of 279 inbred lines were studied under both water-stress (WS) and well-water (WW) field conditions, for three consecutive years. Averagely, ASI was extended by 25.96%, EBM was decreased by 17.54%, and the PH was reduced by 12.47% under drought stress. Genome-wide association studies were carried out using phenotypic values under WS, WW, and drought-tolerance index (WS-WW or WS/WW) and applying a mixed linear model that controls both population structure and relative kinship. In total, 71, 159, and 21 SNPs, located in 32, 59, and 12 genes, were significantly (P < 10−5) associated with ASI, EBM, and PH, respectively. Only a few overlapped candidate genes were found to be associated with the same drought-related traits under different environments, for example, ARABIDILLO 1, glycoprotein, Tic22-like, and zinc-finger family protein for ASI; 26S proteasome non-ATPase and pyridoxal phosphate transferase for EBM; 11-ß-hydroxysteroid dehydrogenase, uncharacterised, Leu-rich repeat protein kinase, and SF16 protein for PH. Furthermore, most candidate genes were revealed to be drought-responsive in an association panel. Meanwhile, the favourable alleles/key variations were identified with a haplotype analysis. These candidate genes and their key variations provide insight into the genetic basis of drought tolerance, especially for the female inflorescence, and will facilitate drought-tolerant maize breeding.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Desidratação , Secas , Melhoramento Vegetal , Água , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...